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Sound generat'ion by turbulent two-phase flow is considered by the methods of 
Lighthill's theory of aerodynamic noise. An inhomogeneous wave equation is 
derived, in which the effects of one phase on the other are represented by mono- 
pole, dipole and quadrupole distributions. The resulting power outputs are 
obtained for the case of a distribution of small air bubbles in water. The monopole 
radiation resulting from volumetric response of the bubbles to the turbulent 
pressure field overwhelms that from the quadrupoles equivalent to the turbulent 
flow, the increase in acoustic power output being about 70 dB for a volume con- 
centration of 10 yo. The monopole radiation occurs through the forced response 
of the bubbles at  the turbulence frequency; resonant response is shown to be 
impossible when the excitation is due to turbulence alone. Surface radiation 
arises from the edge of a cloud of bubbles. This radiation is important when the 
region containing bubbles is in the form of a sheet with thickness smaller than the 
length scale of the turbulent motion. Dipole radiation is also considered, and 
found to be negligible whenever monopole sources are present. In the case of 
a dusty gas, only dipole and quadrupole sources are present, and here it is shown 
that the dipole radiation is equivalent to an increase in the usual quadrupole 
radiation. The increase depends upon the mass concentration of dust, and is 
significant for mass concentrations in excess of unity. 

1. Introduction 
In this paper we consider the sound radiation from a finite region of turbulent 

or unsteady flow, in which the fluid consists of a mixture of two phases. For the 
most part attention is confined to the case of a small volume concentration of air 
bubbles in water, though the case of a gas containing small dust particles is also 
examined briefly. Much work has been done in the past on the radiation from 
a single air bubble in water (e.g. Strasberg 1956) when various forms of excitation 
are responsible for the motion of the bubble. The bulk properties of a distribution 
of bubbles in water have also been studied, in particular the well-known drastic 
reduction of the sound speed caused by even a very small concentration of 
bubbles, and the variation of the sound speed with frequency. A review of these, 
and many other effects, is given by Batchelor (1967). Much less has been done on 
the  excitation of a single bubble, or a distribution of bubbles, by a turbulent 
pressure field. This problem is discussed here on the lines of the Lighthill (1952) 
theory of aerodynamic sound generation. 

A Lighthill inhomogeneous wave equation is first derived, in which the action 
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of the bubbles on the water is represented by an equivalent distribution of mono- 
pole and dipole sources, in addition to the quadrupoles acoustically equivalent 
to the fluctuating flow. When no boundaries are present in the flow, the acoustic 
power output can be found in terms of the source strengths by the usual formulae. 
In  order to estimate the monopole source strength, the response of a single bubble 
in turbulent flow is then considered using familiar equations. The pressure 
spectrum of a turbulent flow is relatively broad, and there is the possibility that 
large changes in bubble volume may arise from the small spectral intensity of 
the pressure at  the high natural resonance frequency of the bubble. This would 
be a difficult effect to estimate reliably, for, although it is possible to give an ana- 
lytical form for the pressure spectrum at high frequencies using the Kolmogorov 
theory of the fine-scale structure of turbulence (Batchelor 1953), the resonance 
would be limited only by dissipative effects whose character is not yet properly 
understood. In  particular, the radiation damping of a bubble at resonance when 
surrounded by a distribution of bubbles is difficult to analyze, since the sound 
speed at  high frequency in the distribution is complex, and varies with frequency. 
A detailed consideration of these effects is, fortunately, not necessary here, for 
the possibility of significant resonant response under excitation by turbulence 
alone is ruled out ( 3  5). The reason for this is that the length scale over which the 
pressure field remains coherent at  the resonance frequency is found to be very 
small compared with the bubble radius. The phase of the pressure field then varies 
rapidly over the bubble surface, whereas significant volume response requires 
the pressure to be substantially in phase all over the surface. 

For this reason, the extension given by Curle (1955) to the Lighthill theory, 
taking account of the effect of surfaces in the flow, is not considered. The only 
way in which the presence of surfaces can alter the inferences to be made about 
the effect of bubbles on the radiated noise, is by introducing the possibility of 
coherent forcing, at  the resonance frequency, over length scales large compared 
with the bubble radius. If the behaviour of the surface is controlled entirely by 
the turbulent flow, this possibility is again ruled out, since the length scales of the 
forcing due to the surface would be of the order of those in the turbulent flow itself. 
If, however, the motion of the surface were controlled by some external means, 
we could have the possibility of coherent forcing at  the resonance frequency. This 
is exactly what happens if, for example, the bubble is irradiated by a sound wave 
generated by motion of a surface (Hunter 1967). Even then, this does not neces- 
sarily mean that resonant response is significant, in view of the high dissipation 
occurring in a distribution of bubbles at the resonant frequency. If such cases, in 
which the control of the surface behaviour by external means provides a length 
scale large compared with the bubble radius, are excluded, we can entirely 
discount the resonant response of the bubbles, and no further attention need be 
paid to the effect of surfaces. 

Certain effects of two-phase flow are obvious, and will receive no more attention 
in this paper. These concern surface and volume sources in an infinite region of 
bubbly fluid in which the sound speed C, is significantly lower than the sound 
speed c, in pure water. According to the usual ideas of aerodynamic noise theory, 
the intensities of monopole, dipole and quadrupole sources vary as c-I, c-3 and 
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cc5, where cis the sound speed in the far-field of the sources. Therefore, in this case, 
the power output of these sources will be increased by the factors ca/cm, (c,/c,)~ 
and (ca/cm)5 respectively, over their values for emission into pure water. However, 
in practice this case never arises, and one is usually concerned with situations in 
which the bubbly liquid occupies a region with typical dimension small compared 
with a sound wavelength in pure water. The theory is therefore set up in a form 
capable of handling these cases where the fluid mixture is inhomogeneous on 
scales smaller than a wavelength. In this way, changes in the turbulence- 
generated sound are attributed to a distribution of acoustic sources, whereas 
the increases noted above for the infinite bubbly region are essentially connected 
with sound propagation over distances of many wavelengths. The physical 
bases for the results in the two cases are thus quite different. 

In  the formulation given here, monopole sources of sound arise from the forced 
response of the bubbles at the frequency characteristic of the turbulence. They 
lead to an efficiency proportional to the fifth power of Mach number, which is the 
variation usually ascribed to quadrupole sources. In fact it is shown that the 
monopole intensity is just that of the usual Lighthill quadrupoles, but augmented 
by the factor (c,/c,)*, which should be contrasted with the (ca/c,)5 factor referred 
to previously. ca/c, can easily exceed 10, so that the presence of bubbles in a 
turbulent flow will very greatly increase the acoustic power output. For the 
extreme case of a 10 % concentration of bubbles by volume the acoustic power 
may be increased by about 70 dB. 

Apart from effects arising from the variation of bubble volume, there is the 
question of whether abrupt changes in the mean concentration can produce 
appreciable sound. The sources corresponding to a discontinuous rise in concentra- 
tion are examined in 8 6 ,  where it is shown that the radiated field can be expressed 
in terms of a surface distribution over the interface across which the concentration 
changes. The radiation produced is shown to be equal to that produced by dis- 
tributed sources in a volume which has one typical dimension equal to the 
turbulence length scale. 

Dipole sources of sound arising from bubble response are also considered. As 
expected, they are much less efficient than the monopoles a t  the very low Mach 
numbers typical in underwater applications. The case of a dusty gas is then dealt 
with, in which monopole radiation cannot occur, and in which the action of the 
dust particles on the gas is represented entirely by a dipole distribution. Again 
it is shown that the presence of dust is to augment the usual quadrupole radiation. 
The increase in power output is less startling than that caused by bubbles, but is 
appreciable when the mam concentration of dust exceeds unity. 

2. Lighthill equation for flow of air bubbles in water 
We consider a finite region in which unsteady or turbulent flow occurs, and in 

which the fluid is a mixture of water (a-phase), and a small concentration by 
volume of gas bubbles (P-phase). The small quantity P(x, t )  is the fraction of unit 
volume of the mixture which is occupied by the bubbles. pa, p@ are the actual 
densities of the two phases, i.e. pa = (mass of a-phase)/(volume occupied by 
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a-phase). The mass of a-phase in unit volume of mixture is then (1 - /3) pa, and 
the total mass per unit volume is (1 -,8)pa +PpP. Far from the turbulent region 
,8 = 0, and the fluid is entirely a-phase, at rest apart from small velocities induced 
by the passage of sound waves from the turbulence. 

We choose to formulate a Lighthill equation for the density pa. This has the 
advantage of displaying clearly the action of one phase on the other in terms of 
acoustic sources with a simple physical interpretation. In  particular, monopole 
and dipole distributions appear, representing the effects of mass and momentum 
injection into the a-phase resulting from the motion in the /3-phase. The same 
kinds of sources appear if we consider the density (1  - P )  pa instead of just pa, but 
their interpretation is not quite so simple, and they are less easy to calculate. The 
alternative is to regard the fluid as a mixture, with density p = (1 -/3)pa+PpP. 
In this case, a conventional Lighthill equation can be derived, involving quadru- 
pole sources only. The physical interpretation is then largely lost, and the task of 
relating the quadrupole strength to the flow and phase parameters is difficult, 
as so much is hidden, for example, in the term p - c:p. 

We are assuming the concentration P and the bubble radius u to be so small 
that meaningful values can be attached to the velocity and stress in the a-phase 
at  all points (x, t ) .  Let u: denote the velocity in the a-phase. Mass conservation 
for this phase is expressed by 

-(1-/3)p"+--(1-/3)p"uuj. a a = 0, 
at axj 

i, a 
at ax j  

which we write in the form 
-pa + - pau4 = Q .  

Here 

= -pa---ln(1-,8) Da 
Dt 

is the effective rate of mass injection density into phase a. If Fi denotes the inter- 
phase force density, the momentum equation for phase a reads 

a a 
at axj - (1 -P)pau; + - {( 1 - /3) pau: 21.7 +pij} = Fi. 

pij is the stress tensor, and is composed partly of stresses set up by the eddy 
motion in the a-phase, and partly of stresses set up by the response of the P-phase 
to the fluctuating eddy pressures. For the present there is no need to attempt to 
specify Fi further. We rewrite the momentum equation in the form 

where G~ = F~ + G;, G; = ( a p t )  ppau;. 

By cross-differentiation of (2.1) and (2 .2 )  we get the required Lighthill equa- 
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tion, provided we note that far from the turbulent region this equation must 
reduce to the homogeneous wave equation 

{ ( a 2 / a t 2 )  - c: v2> pa = 0, 

where c, is the sound speed in pure a-phase. This gives 

in which qj = ( 1 - p) p"uf ui" + p,j - c:paCYii. 

The process of sound generation by the turbulent flow is accomplished by 
three distinct mechanisms. First, by a distribution of monopoles, of strength Q, 
equal to the rate of mass injection into the a-phase. Secondly, by a distribution 
of dipoles, of strength G,. G, is the effective force on the a-fluid, composed in part 
of the interphase force 4, and in part of the term Gi. The latter represents the 
momentum defect arising from the fact that a fraction p of the total volume is 
not occupied by a-phase. Finally, we have a distribution of quadrupoles of the 
Lighthill type, of strength !&. As usual, qj is dominated by the Reynolds stress 
terms, since, by the definition of c,, the fluctuations in p and c;pa cancel, approxi- 
mately. Viscous contributions to p d j  are neglected here, just as usual. In  general 
it  is quite adequate, for the order-of-magnitude arguments to be used later, to 
approximate qj by pguFu7, where the zero suffix implies an average value. 

The Mach number in typical underwater applications of flow noise theory is 
extremely small when based on c, ( at most), and the usual arguments would 
therefore indicate that monopole sources overwhelm the dipoles, while these in 
turn are very much more efficient than the quadrupoles.However, in the present 
problem we have a great range of new parameters: for example, the radius and 
resonance frequency of the bubbles, the strength of the interphase force, the 
relaxation time for response of the bubbles to the a-motion, and the concentra- 
tion p. The usual rank ordering of acoustic sources may therefore only be valid 
for certain restricted ranges of the above parameters. It is the object of subsequent 
sections to determine how the efficiency of each type of source varies with these 
parameters, as well as with the parameters (length and velocity scales) of the 
turbulent motion. 

3. Volumetric response of a bubble to a fluctuating pressure field 
In this section, we consider the volumetric response of a single bubble, im- 

mersed in infinite compressible fluid, when a fluctuating pressure field is set up in 
the fluid. The pressure will be regarded as uniform in space far from the bubble, 
though fluctuating in time. A real pressure field, with finite length scale, will 
behave in this way provided the bubble diameter is small compared with the 
length scale of pressure variation. Viscous forces and thermal diffusion effects 
will be neglected, with the consequence that radiation damping is the only form 
of dissipation which limits the response of the bubble at its resonance frequency. 
It will be seen in 0 5 that resonant response cannot occur, and therefore that the 
validity of this assumption is only an academic matter for our purposes. 
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The object is to determine the variation of bubble volume, and of the pressure 
scattered by the bubble, with the imposed pressure variation. The equations 
governing the response are well known (see, e.g. Strasberg 1956), so that only 
a brief derivation need be given here. In  the undisturbed state, the bubble has 
internal pressure B and radius a, and is surrounded by infinite fluid of density pa, 
pressure P, and sound speed c. A pressure fluctuationp(t) is then set up uniformly 
in space at  infinity, the bubble pressure ispb(t) and the radius R(t). T denotes the 
surface tension; ps(r, t )  is the pressure induced by bubble response. Spherical 
symmetry is assumed, as it is known (Strasberg 1956) that negligible acoustic 
power is contained in any mode of oscillation of the bubble other than the 
symmetric expansion mode. 

For the pressure drop across the bubble surface we have 

B = (2T/a)  + P (3.1) 

and p b  = (2T/R)+P+p+ps a t  r = R. (3.2) 

pbR3y = 6U3y. (3.3) 

If adiabatic changes are assumed in the bubble, 

There is evidence to suggest that in general changes are isothermal, so that 
y = 1 effectively. This is particularly likely to be true in the circumstances when 
the characteristic frequency of p is small compared with the bubble resonance 
frequency, in which case a slow forced motion of the bubble occurs. At higher 
frequencies, however, changes are more likely to be adiabatic, and for this reason 
y is retained. 

The scattered pressure ps is a solution of the homogeneous wave equation, 
vanishing at r = 00. Thus F( t  - r/c) 

P&",t) = 9 

say, so that 
-- aps = (- 1 -++. a 1 

ar c at r (3.4) 

The gradient of pe at r = R is related to the bubble radius by the linearized equa- 

aps - a4 a2R -- ar -poat=po-  
tion of fluid motion, 

at  r = R. 
a t 2  

(3.5) 

Write R' = R-a, and linearize (3.1)-(3.5), supposing that 122'1 < a. Defining 
a resonance freauencv w,, by 

we find 

in which 

(3.7) 
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From (3.7) we can now find an equation for the fluctuating concentration P, 
in the case when we have N bubbles, each of mean radius a, in unit volume of 
fluid. For aR 3 aR 

- 4na2N- = - P o -  at a at 
aP 
at 
_ -  

in linearized form, where Po is the time-average of /3. This gives 

L P = - - ( - - + - ) ( - )  3P0 1 a 1 P 
a c a t  a p , '  (3.9) 

In  this equation, po may still be taken as the density of the fluid surrounding 
each bubble (i.e. the a-fluid) rather than of the mixture, for a small mean con- 
centration cannot significantly alter the density when pp < pa. p must apparently 
now include not only the forcing pressure set up a t  infinity, but also the resultant 
of all the scattered pressures set up by the distribution of bubbles. Just how much 
p is modified by these scattered pressures is an important point, which will 
receive further attention. 

It will be seen later that in general the bubbles may respond significantly 
around two very distinct frequencies, one the resonance frequency w,, the other 
a frequency characteristic of the turbulent motion. The terms involving c in (3.9) 
will be found to be negligible for the forced motion at  the turbulence frequency 
whichever of c,, c, is used. The problem of which value of c is relevant to (3.9) 
only arises in the case of resonant response, which we shall see is impossible 
when the bubbles are excited by nearly incompressible turbulence. 

4. The sound field from forced bubble motion 
We assume for the moment that the pressure field p( t )  generating the bubble 

motion is that of a turbulent flow whose internal dynamics may be regarded as 
nearly incompressible. Let I ,  denote a correlation scale for the turbulent flow, 
U the mean flow velocity and u, the r.m.s. turbulent velocity. The dominant 
frequency of the pressure field, measured in a fixed frame, is then of order U/Zo 
and this is certainly an upper limit for the typical frequency of the field p( t )  
experienced by the bubbles. Bubbles are convected with a speed of order U, and 
the frequencies observed following the mean flow are generally smaller than 
those observed at a fixed point by a factor CT = u,/U. The dominant frequency 
of p( t )  may therefore be taken as of order uo/l,. Applications of flow noise theory 
to underwater situations commonly involve values of U of order 30 ft./sec, while 
aw, is roughly 60ft./sec in the case of air bubbles in water at  one atmosphere 
static pressure P. c = 5 x is perhaps typical, and also a < I , ,  for a bubble of 
radius comparable with 1, could not withstand the high shear across it. It follows 
that u,/lo $ w,, and we have a situation in which there is strong forcing but small 
response a t  the turbulence frequency, while at  the much higher frequency w, 
the pressure field has relatively little spectral intensity, but the bubbles have 
a strong intrinsic response. The response spectrum for the bubble motion there- 
fore has two distinct peaks, near uo/l, and near wo, corresponding to forced and 
resonant oscillations respectively. If the resonance peak is sufficiently narrow, 
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we may take the two effects separately, and add them in mean-square, a con- 
clusion which can be investigated in detail if a definite analytical form for the 
pressure spectrum is assumed. 

For the forced motion, we neglect a2/at2 compared with W E .  The terms involving 
c in (3.9) can both be neglected, for they are smaller than those retained by a 
factor of order uoa/clo. This factor is extremely small even with c = c,, the mixture 
sound speed, for c, certainly never drops below the typical mean velocity U of 
order 30ft./sec. The terms involving c represent radiation damping, and are 
important only in controlling the resonant response. We have, then, simply 

Before using this equation in the Lighthill equation (2.3), we must first justify 
the assumption that the pressure field forcing any particular bubble is dominated 
by the eddy motion pressure. Now the mean square pressure scattered by a 
distribution of bubbles to any point in the distribution is size-dependent, and in 
fact varies linearly with the typical dimension L of the turbulent bubbly region. 
Thus, if L is large enough the scattered pressures would appear to dominate the 
pressure field experienced by any bubble. However, this dependence upon size L 
is largely irrelevant to the problem of sound generation to distances large compured 
with L. The pressure reaching a bubble from bubbles further away than a wavc- 
length A, approximately, is a radiating sound field pressure, and its action on the 
bubble is exactly that of ordinary sound waves on the bubble. The bubble is 
essentially passive in its response, and absorbs energy, if anything. Scattering of 
the incoming sound field results with a directional redistribution, and a decrease 
in the acoustic energy flux. The waves scattered draw their energy from the 
primary wave, and energies in the acoustic mode cannot be increased by the 
scattering. Compare Lighthill (1953), where the sound waves scattered by the 
interaction of a primary sound wave with turbulence draw their energy from the 
primary wave, and not from the turbulence. We can therefore reject the scattered 
pressures reaching a particular bubble, provided they originate at  distances 
greater than h from the bubble. That bubble can, however, scatter the near-Jield 
of any other bubble within reach (Hunter 1967), so that modifications to p from 
scattered pressures originating at  distances less than about a wavelength h must 
be considered. Whether these modifications are significant or not is now inde- 
pendent of the size L of the bubbly region. 

This idea has important consequences for the Lighthill (1952, 1954) theory of 
aerodynamic noise. A turbulent eddy radiates sound waves, with a l/r variation 
of pressure and velocity at distances greater than a wavelength. Consequently, 
the mean square acoustic pressure at any point in the turbulent region increases 
linearly with the scale L of the region, a t  any rate until viscous effects limit the 
otherwise unbounded increase which would occur in the ‘ compressible homo- 
geneous turbulence’ limit L + co (see Lighthill 1955). When L is large, but finite, 
one might expect these acoustic quantities to provide a significant change in the 
acoustic stress tensor T,, so that the sound power output from the flow might be 
increased. In  view of the discussion above, we see that the apparent dependence 
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of Tii upon L is irrelevant to the sound generation problem. Near-field corrections 
to !l& may be important, as an eddy can scatter the near-field of its neighbours 
into sound-but these corrections really should be discussed whether or not L is 
very large compared with 1, or A. The outcome of this argument appears to be 
that the Lighthill theory for low Mach number flows is adequate for the descrip- 
tion of sound emission from large volumes of turbulence ( L  % A)  to just the same 
extent that it is adequate in the case A > L 2 1,. 

Returning now to the question of two-phase flow, we calculate the near-field 
correction to p by integrating the scattered pressure of a single bubble over the 
distribution of bubbles occupying a sphere of radius A about any point in the 
turbulent bubbly region. The wavelength is that appropriate to propagation at  
frequency uo/l, and at  speed c,, the low frequency sound speed in the mixture. 
This will be true when L % A, for then the time L/cm for propagation at speed c, 
across the distance L is large compared with the time-scale lo/uo of the source, 
and therefore the source radiates effectively into an inJinite medium with speed 
en%. On the other hand, if L 5 A, the integration of the scattered pressures must 
run only over a sphere of radius L. The greatest modification of the pressure 
field then corresponds to the case L 9 A, and then we have A B 1, % a, for the 
minimum value of c, we shall be concerned with is 100ft./sec, corresponding to 
a concentration Po = 10-1 (see Batchelor 1967). The integration procedure is 
therefore relevant on two counts. In the first place, the near-field of radius h is 
large enough for a continuous distribution of bubbles to be relevant, and, in the 
second, the near-field is so extensive that it contains many eddy volumes Z;. This 
allows us to replace each eddy by a point source of strength proportional to the 
eddy volume 1;. 

The calculation is done at  the end of this section, with the result 

The brackets ( ) denote average values, all quantities being assumed stationary 
random functions of time. With the typical values Po = l O - l ,  c, = 100ft./sec, 
uo/U = 5 x lop2, U = 30ft./sec, aw, = 60ft./sec, which would seem to give the 
maximum value of (p;}  likely to occur in any practical situation, this gives 

Therefore it is quite adequate, for the forced motion, to assume that the pressure 
forcing any particular bubble is that generated by the turbulent motion alone. 

We now require an estimate of the acoustic power output P, from the region 
containing bubbles, whose volume is of order L3, arising from the monopole 
term aQ/at in (2.3). The contribution from the forced mode only is considered here. 

{p:)&z) - 2 x 10-7. 

P, is given by 

where p, = p$ is the density in the very distant field. This expression has been 
obtained from the usual retarded-potential solution 

38 Fluid Mech. 36 
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on the understanding that differences in retarded-time (of order Zo/ca) correspond- 
ing to points separated by less than an eddy scale 1, are negligible compared with 
the time-scale Z,/zc, of the source field in the forced mode. This is evidently well 
satisfied, since the fluctuation Mach number uo/ca is always exceedingly small. 
We can express this by saying that the source field is 'acoustically compact ' as 
far as the forced mode is concerned. 

Equation (4.2) is valid only if the turbulent region has typical dimension at  
least of order 1, in all directions. It is useful to write down also the power output 
Pa obtained from (4.3) when the radiating volume has the form of a sheet of 
area L2(L 2 lo)  and thickness A 4 I , :  

For the moment, however, we consider only (4.2). 
Since /3 is small compared with unity, we have from (4.1) 

(4.4) 

as we are interested at present in the sound generated by fluctuations in P, rather 
than that generated by variations in space of the mean concentration Po. As 
already discussed, p will be taken as the fluctuation in the eddy motion pressure. 
The magnitude of p will be estimated as the typical fluctuation in +pou2, i.e. 
p N po crU2, where cr = uo/U is the relative turbulence level. The time differentia- 
tion D,/Dt will be represented by the frequency multiplication uo/Z,. This is also 
the relevant estimate of the operation a/at, although superficially one might 
expect ajat N U/lo. We can see this in two ways. If the derivative ajat is written 
as the sum of a total derivative DjDt and a convective derivative, the total 
derivative is equivalent to the multiplicative operation uo/l,, while the convective 
term can be shown to represent an acoustic source of essentially lower efficiency. 
Alternatively, transform to a frame of reference which is convected with the 
mean flow. In  this frame the operation a/at is certainly equivalent to multiplica- 
tion by uo/Z,, while other changes resulting from the transformation are negligible 
if the mean flow Mach number Ujca is small. Either way, we see that only the true 
turbulence frequencies contribute to the acoustic power output, and that for 
acoustic purposes all time differentiations are equivalent to multiplication by 
uojl,. This point is emphasized by Lighthill (1954). 

With these estimates, and with neglect of convective effects, except in so far 
as they determine the relevant frequencies, we find that 

p, N - 9/3'(p0crU3L2) 477 
(crM)5 (&)4(f), (4.6) 

where M = Ujc,. An efficiency can be conveniently defined by comparing P, 
with the rate of working of the fluctuating pressure pocrU2 against the mean 
flow U over an area L2: 
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The dependence of qm on M5 is rather surprising, being characteristic of quadru- 
pole rather than monopole sources. It is less surprising if we remember (9  2) that 
it  was noted that the whole problem could be tackled using a quadrupole type 
of source only. The monopole Q is equivalent, in part, to a(p - c;p)/at, a quadru- 
pole time-derivative which would occur in this alternative treatment, p and p 
now both referring to the two-phase mixture. Evidently the two forms both 
yield the same dependence upon M .  

We have already noted that changes of volume of the bubbles are likely to take 
place at  constant temperature when the frequency is small compared with wo. 
Thus y = 1 effectively, and then by (3.6) 

Now, when /lo is neither too small nor too close to unity, Batchelor’s (1967) 
expression for the isothermal sound speed c, at low frequencies can be written 

and therefore we have the following simple relation between sound speed and 
resonance frequency, ( awe)' = 3p0 c: . 
Equation (4.7) can then be written in the form 

(4.9) 

(4.10) 

Except for the factor (c,/c,)~, this is exactly the radiation efficiency of a typical 
turbulence quadrupole of strength qj N p o v U 2 .  Note that the operation P/at2 
on qj must be represented here by multiplication by ug/l;; the reasons are exactly 
those referred to earlier. Thus the effect of bubbles in the turbulence is to increase 
the acoustic power output by the factor (G,/c,)~.  This increase is extremely large; 
in fact (c,/c,)~ is of order lo5 even when Po is as small as lo-’, while, for the 
maximum concentration Po = 10-I which can reasonably be encompassed by the 
theory, (c,/c,)~ is of order 10’. The acoustic power output of a flow may there- 
fore be increased by up to 70dB by the monopole radiation of bubbles at  the 
turbulence frequency. 

To close this section, note that the pressurep,, induced by the monopole source 
aQ/at at any point in the turbulent bubbly region is given by 

where V is the turbulent volume, and the square brackets imply evaluation at  
retarded-time, as in (4.3). When uo/c, < 1, and when the volume V - L3 is 
large enough to contain many eddy volumes Z& this gives 

(4.11) 

38-2 
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Thus, as claimed earlier, the mean-square scattered pressure increases linearly 
with L. However, it was explained previously that, if we wish to consider the 
sound generation problem only, the volume integration need run only over a 
sphere of radius h centred on the point considered, Hence 

and, with the estimate of aQ/at made above, we quickly find the value of ( p i )  
quoted earlier in this section. 

5. Resonant response of bubbles 
We have noted in the previous section that appreciable monopole radiation 

may result from the resonant response of bubbles to the small spectral density 
of the pressure field at  the frequency w,. This, however, is a possibility which 
cannot occur when the applied pressure field p is that due to turbulent motion in 
a nearly incompressible fluid. The essential reason is that the turbulent pressure 
field cannot remain coherent in space, at the high frequency w,, over length scales 
as large as a bubble radius a. The spherically symmetric mode of oscillation of the 
bubble, which is the only mode which can give rise to volume change and so to 
monopole radiation, cannot then occur, for it can be created only when the 
pressure field has nearly the same phase at  all points on the bubble surface. 

The effective length scale for the turbulent field at frequency w, can be found 
by the following argument. The bubbles travel with a translational velocity 
which must be comparable with the mean velocity U .  Relative to the mean flow, 
the bubbles have fluctuating velocities which are certainly of the order of the 
turbulence velocity uo in the a-phase. The pressure fluctuations experienced by 
the bubbles will therefore be similar to those observed at a point following the 
mean flow. Now the high-frequency content of a field of turbulence, relative to the 
mean flow, occurs mainly through the convection of an almost frozen pattern 
of small spatial scales (i.e. small comparedwith I,) by the energy-containing eddies 
with characteristic velocity u,. The length scale of the pressure fluctuations at  
frequency w, is therefore of the order of the length scale which, when convected 
by the large eddies at  speed w,, gives rise to the frequency w,. This gives 1, - uo/wo 
for the ' correlation scale ' a t  frequency wo following the mean motion. 

With the typical values U = 30ft./sec, amo = 60ft./sec, and uo/U = 5 x 10-2 
we then have 

1, is thus very much smaller than a, and the possibility of coherent forcing of the 
bubble over its entire surface is ruled out. 

It might be thought that resonant response could arise if the pressure field 
contained an acoustic component a t  frequency w,, generated either by the turbu- 
lent eddies themselves or by their interaction with a surface in the flow. 1, would 
then be of the order of a wavelength A, at frequency wo and at  the mixture sound 
speed c, a t  frequency w,. The low-frequency value of c, is 100ft./sec when 
Po = 10-1 (Batchelor 1967), and so h,/a - 10 in this case. Coherent forcing at the 

&/a w 2.5 x 
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resonance frequency may then be possible, but the possibility is marginal, since 
the speed c, at frequency wo is much less than that at zero frequency. In  any case, 
we can exclude the resonant response to small acoustic fields from the sound 
generation problem by the argument used in 3 4. The action of sound waves on 
the bubble results merely in a scattering of acoustic energy, and no increase in 
energy output can occur. This does not quite complete the argument, for near- 
field scattering can occur, as we have seen. However, the scale A, of the near-field 
in this case is very small, indeed comparable with the average separation 
between bubbles, so that we can probably ignore this effect, which, if it occurs 
at all, will depend critically on how many bubbles are in the near field a t  any 
instant. 

Since we have now shown the resonant motion not to be significant, the 
problems of the relevant value of c in (3.9)) and whether the neglect of viscous 
and thermal damping is valid, are of no interest here. Resonance and the dissipa- 
tion which limits it are two aspects of the problem which are irrelevant when 
incompressible turbulence provides the excitation. 

6. Radiation due to inhomogeneities in mean concentration 
In  the previous sections, we have considered the radiation which arises when 

the concentration /?fluctuates about its mean value because of the compressibility 
of the bubbles. We now ignore that aspect of the problem and consider the radia- 
tion which may result from rapid spatial variation of the mean concentration. 
Situations commonly arise in which the bubbles form intense clouds, in which the 
concentration is high, surrounded by more or less clear fluid. It is obviously of 
interest to see whether the unsteady convection and distortion of these clouds 
can produce an appreciable sound field. 

The concentration can be expressed as the sum of mean and fluctuating parts, 
/? = P + p'. The part of the monopole source strength involving /?' has been dealt 
with in the last sections, and here we consider the monopole 

S E P  --p* a D,- 
at Oat Dt 

We shall model the cloud-water interface as a surface of discontinuity in p which 
is convected by the bubble velocity field uf. The interface is taken as locally 
plane, so that we can write 

where H denotes the Heaviside unit function, Po is the constant value of the mean 
concentration within the cloud, yn the co-ordinate normal to the interface, 
yo(t)  the yn. co-ordinate of the interface at time t. We have 

(6.2) P = P o H ( Y m - Y o ) ,  

and 

This gives 
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and then the monopole in (6.1) can be conveniently combined with that part of 
the momentum defect dipole Gi = po 8Pu;jat which contains p ,  to yield 

aQ aGi a a  a - a  
at aY, Oayi at Oat ayi ---= - p - - (uf B)  - p - (p- (u; - uf )] . 

The first term in (6.4) represents a dipole field arising from the random dis- 
tortion of the interface by the motion of the bubbles. This dipole term will be 
considered further below. For the monopole term in (6.4) we estimate the di- 
vergences of uq, uf from (2.1) and from the analogous equation 

a a 
- ppa + - ppaut = 0) 
at ayi (6.5) 

expressing conservation of the mass of the P-phase. Neglecting small variations 
in pa we have 

and the latter term dominates, since /3 < 1. Then 

- 3P Da - -~ 
(aWo>2 E” 

where (4.1) has been used to relate the fluctuating 
pressure p .  The monopole term in (6.4) then becomes 

concentration ,!I’ to the 

(6.6) 

The operations D&Dt and Da/Dt on the pressure p are equivalent, to the degree 
of accuracy possible here. Comparing the second term of (6.6) with the value of 
aQ/at obtained from ( 4 4 ,  we see that this term involving the H-function repre- 
sents the monopole sources distributed throughout the interior of the cloud. 
On the other hand, the sources represented by the first term of (6.6) are confined 
to the interface between the cloud and the clear fluid outside it. The interface is 
equivalent to a distribution of surface sources, of strength 

The resulting efficiency of these sources is found to be equal to that produced by 
the monopoles distributed in a sheet whose total area is that of the interface and 
whose thickness is just one eddy length I, .  
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Thus an area S of the interface produces the same power output as do the 
monopole sources distributed throughout a volume 1,s. The surface effects are 
therefore extremely large when the typical dimension of the bubbly region is com- 
parable with I,. If the region is in the form of a thin sheet of thickness A 5 I, ,  the 
surface sources will dominate the radiation field. In  that case, (4.2) represents an 
overestimate of the volume-induced sound, and (4.4) should then be used. 

The dipole term in (6.4) can also be expressed in terms of surface and volume 
distributions. Taking the dominant surface source term, the radiated density 
field can be shown to be given by 

from which the radiation efficiency follows as 

rs N ( ~ i 1 4 4  c ~ 3 .  

The ratio of this efficiency to that of the surface monopoles is of order 

and this is slightly greater than unity when the typical values given in 5 4 are 
again used. Therefore this form of radiation is also important when the radiating 
volume is in the form of a sheet with thickness less than about 1,. The dipole and 
monopole sound fields are comparable in this case essentially because the dipole 
field exists independently of the response of the bubbles, and would be produced 
even if the bubbles were rigid and could not respond. On the other hand, the 
monopole surface sound field depends almost entirely on the compliance of the 
bubbles, and the velocities induced by bubble response are small compared with 
those in the turbulence which provide the convection and distortion of the inter- 
face, and hence the dipole surface sound. 

7. Dipole sources of sound 

changes in mean concentration. We have, identically, 
The term G; = appau;/at contains contributions other than those arising from 

Assume that /3 is small compared with unity, and use the momentum equation 
(2.2) to transform the last term above. Apart from the interphase force, we have 

'The last term in (7.1) represents a quadrupole source, whose strength certainly 
vanishes in the far-field where p = 0. It therefore represents a basically less 
efficient source than do the other terms, and may be neglected. From the estimates 
DJDt N uo/l,, a/8xj N l / Z o ,  pi$ - pocU2 we see that the remaining terms are of 



600 D.  G.  Crighton and J .  E. E'fowcs Williams 

the same order of magnitude. We use these estimates, with (4.1) to relate /? to p, 
to obtain the dipole efliciency qd due to volumetric response of the bubbles 

where 7, is the monopole efficiency given in (4.10). The factor M 2  ensures that 
this kind of radiation is negligible in all cases. 

Neglect of the interphase force compared with the displaced momentum is 
certainly valid for the case of air bubbles in water, since the bubbles have appre- 
ciable volume but negligible mass. If, however, the density of the /3-phase is 
large compared with that of the a-phase, the interphase force may be important. 
This happens in the case when the a-phase is a gas, and the /?-phase a distribution 
of rigid dust particles. The volume concentration of dust particles is supposed 
negligible, though the mass concentration may be appreciable. We obtain the 
case of a dusty gas from our general equations by letting /3 + 0, pfl -+ co, so that 
the mass concentration /3pfl/pa has a finite limit, f say. The terms aQ/at and 
aGi/i3xi now vanish identically, and the influence of the dust particles on the gas 
is contained entirely in the interphase force F6. 

Suppose that the dust particle number density is N ,  and that each particle 
has mass m, so that fp" = Nm. Saffman (1962) wrote down the equations of dusty 
gas flow, and assumed that the force density was given by a linear Stokes law, 

F$ = KN(uf-u:). (7.3) 

us is the velocity of the /?-phase at  (x, t )  and K is a constant proportional to the 
viscosity of the a-phase and to the typical particle dimension. This viscous drag 
force is very much larger than any forces due to virtual inertia for the kinds of 
system envisaged by Saffman. We do not need the specific form (7.3) here, though 
it is useful in that it allows us to define a relaxation time for the dust particles as 
7 = m/K. In  most practical cases T is small compared with the characteristic 
time of the gas motion, and, when this is so, the dust particles followthe gas motion 
closely. The effect of the dust particles is then to increase the effective density of 
the mixture from pa to (1 + f )  pa without change in the other variables. In particu- 
lar, the sound speed c, in the dusty gas is given by 

c: = c2,/(1 +fJ, (7.4) 

where f,, denotes an average value off. This result is true, irrespective of the 
validity of (7.3), provided only that a suitable relaxation time is small compared 
with the time-scale of the gas motion. 

Now the momentum and mass conservation equations for the dust particles 
may be written (Saffman 1962) 
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Using these equations, the dipole and quadrupole sources in (2.3) may be ex- 
pressed as 

- (7.7) 

To regard the terms in (7.7) as a monopole and a quadrupole, respectively, 
would be an error. For the monopole term may be rewritten as 

_ 1 a p  1 a2p f azp + - - = -  0- 
c;, at= C: at2 C: at2 

i a  
- = - ( l + f ) p a .  
ck aP 

since, by definition, 

(The low relaxation time limit has been assumed.) Therefore the monopole 
strength is O ( M 2 ) ,  rather than 0 ( 1 ) ,  and this monopole is equivalent to an iso- 
tropic O( 1) quadrupole. 

We can now estimate the efficiency corresponding to the two terms in (7.7), 
remembering that in the low relaxation time limit we have us w ui, and that pa 
is increased to (1 +f) pa. This applies also to the factor po uU3L2 used to normalize 
the efficiency. We find that 

(7.8) Tf 
1 

for the efficiencies corresponding to the first and second terms on the right of 
(7.7), respectively. When fo < 1, rw > qf, and then, in virtue of (7.4), 

(7.10) 

The radiation efficiency is increased by the factor (C,/C,)~ by the presence of the 
dust, and the radiated power is increased by the factor (ca/cJ4, exactly as in the 
case of a suspension of air bubbles in water. However the increases are negligible, 
in practical terms, when fo < 1. When fo > 1, we have 

(7.11) 

so that now the efficiency is increased by the sixth power of the sound speed ratio, 
and the power output by the eighth power. If  the typical velocity U is the same 
for both a clean and a dusty gas, this increase in power output is large, up to 
about 20 dB perhaps, for mass concentrations fo of the order of 2 or 3 which are 
common in many industrial processes where dusty gases are used to increase 
rates of heat transfer. In some cases, however, this comparison is not relevant. 
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For example, if the mechanical power of the flow were the same for the clean and 
dusty gases, as might be the case in a jet-type flow, then 

( 1  +fa) u3 = u;, 
where U ,  U, are the values of the same typical velocity with and without the 
presence of dust, respectively. The increase in power output, according to (7 .1  l), 
would then only be of order fi instead off;, but should still provide an effect 
which is easily detectable in practice. 

8. Conclusions 
The radiation properties of turbulent flow in water have been shown to be 

greatly modified by the presence of a small distribution of air bubbles in the 
turbulence. In  the model used here to describe this process, the effects of the 
bubbles have been represented as acoustically equivalent to a volume distribution 
of monopoles and dipoles, in addition to the quadrupoles equivalent to the 
fluctuating stresses in the turbulence. Monopole radiation results from the low- 
frequency forced volumetric response of the bubbles to the turbulent pressure 
field. The effect of this radiation is in all cases equivalent to an increase in the 
quadrupole radiation (above its value in pure water) by the factor (cJc, )~ ,  
where c,, c ,  are the sound speeds in pure water and in the bubbly region respec- 
tively. The acoustic power output of the flow is increased by 50dB for a 1 yo 
airlwater concentration, and by 70 dB for a 10 yo concentration. These may be 
regarded as relevant figures for many practical situations. 

Significant volumetric response of the bubbles at  their high natural resonance 
frequency has been shown to be impossible when the excitation is due to nearly 
incompressible turbulence alone. The reason is that the length scale over which 
the pressure field remains coherent at the resonance frequency is found to be very 
small compared with the bubble radius. The exclusion of resonant response 
indicates that the use of linear equations to represent the bubble response is 
justified. 

Dipole radiation arises through the displacement of fluid momentum by the 
gas bubbles, and through the action of the force between bubbles and fluid. The 
momentum displacement effect is the dominant cause of dipole radiation, but 
the resulting efficiency is always negligible compared with that of the monopoles. 

Monopole and dipole radiation occur through the unsteady convection of the 
interface between the bubblelwater mixture and the clear fluid outside it. In this 
mse the radiation is generated essentially by a distribution of sources over the 
interface. The monopole and dipole radiation efficiencies are comparable, and 
are important, compared with the volume-generated sound, if the radiating 
volume is in the form of a sheet with thickness equal to, or smaller than, an eddy 
scale I, .  If the thickness is equal to the eddy scale, which may be of the order of 
one foot in practical situations, then surface and volume monopole power outputs 
are equal, and either overwhelms the radiation which would occur if no bubbles 
are present. 

Finally, in the case of a suspension of dust particles in a gas, no monopole sound 
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can be produced. Dipole radiation occurs through the action of the force exerted 
by the dust on the gas, and it is shown that this form of radiation is equivalent 
to an amplification of the quadrupole sound which occurs in a clean gas. When the 
mass concentration of dust exceeds unity, this increase is large-up to about 
20dB perhaps, though not nearly as large as that provided by the presence of 
bubbles. Moreover, the presence of a large mass concentration of dust will 
substantially reduce the flow speeds if the flow is governed by a source of 
constant power. In  that case, the quadrupole sound is enhanced, in intensity, 
by the factor (mass concentration to)% over its value in a clean gas under the 
same mechanical power. This would still indicate that the use of dust particles in 
many industrial processes will make a considerable contribution to the noise level. 

This research was carried out under the Naval Ship Systems Command General 
Hydromechanics Research Program, administered by the Naval Ship Research 
and Development Center under Contract N 62558-4996. 
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